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Abstract 

Previous research has shown that the sliding failure plane of foundations in terms of 

shear banding can only be induced by plastic strain softening. Shear banding is also 

considered a failure phenomenon that appears under the condition of structural in-

stability. Based on the research results of this study, four conclusions can be drawn 

as follows: (1) The solution of shear bands comes from the determinant of the struc-

ture matrix being equal to zero, so it can be obtained by the finite-element method 

under prescribed displacements. (2) Under the condition that the initial structure is 

symmetric, the structure will lose its symmetry when shear bands are induced by 

plastic strain softening. (3) In the derivation of the ultimate bearing capacity equa-

tion of foundations, if a perfectly plastic model is adopted after setting the general 

shear failure plane, then a shear band is not induced and the structural symmetry is 

maintained, resulting in overestimation of the ultimate bearing capacity of the foun-

dations. (4) Traditional scholars adopt the perfectly plastic model; thus, shear bands 

cannot be induced and the plastic zones spread to the elastic zones originally outside 

the shear bands, resulting in overestimation of the ultimate bearing capacity of 

foundations. Therefore, the authors suggest that the strain-softening model should be 

adopted in future studies on the ultimate bearing capacity of foundations. Design 

codes should also introduce the ultimate bearing capacity equation of foundations 
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based on the strain-softening model to ensure the safety of building foundations. 

 

Keywords: strain softening, perfectly plastic, ultimate bearing capacity, foundation, 

general shear failure, punching shear failure, stability, symmetry. 

 

 

Introduction 

The design of foundations for 

residential buildings requires the ulti-

mate bearing capacity of the soil. The 

literature shows that scholars have used 

many different methods to study the 

ultimate bearing capacity of founda-

tions (Bolton and Lau, 1993; Davis and 

Booker, 1971; Chen, 1975; Chi and Lin, 

2020; Peng and Peng, 2020; Griffiths, 

1982; Sokolovskii, 1965). These 

methods include the limit equilibrium 

method, the slip-line method, the limit 

analysis method, the numerical limit 

analysis method, the finite-element 

method, and the finite-difference 

method. 

The earliest research works by 

Prandtl (1920) and Reissner (1924) de-

rived the ultimate bearing capacity 

equation for foundations using soil 

plasticity. The extended research results 

of Terzaghi (1943), which are widely 

quoted in textbooks (Bowles, 1988; 

Das, 1983; McCarthy, 2007; You, 

1974), adopted the rigid-perfectly plas-

tic model shown in Figure 1, and the 

symmetrical long-strip foundation 

shown in Figure 2 with symmetrical 

shear failure surfaces under plane strain 

conditions. 
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Figure 1. The soil model used by Terzaghi to derive the ultimate bearing capacity 

equation (Terzaghi, 1943). 

 

 

 
Figure 2. The general shear failure plane set before deriving the ultimate bearing 

capacity equation of the foundation (reproduced from Terzaghi, 1943). 
 

 

However, in the load test of a 

foundation on a level ground surface 

(see Figure 3), when the soil layer is a 

firm clay layer or a dense sand layer, 

McCarthy (2007) presented the general 

shear failure shown in Figure 4 and the 

load–settlement curve shown in Figure 

5. 
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Figure 3. Typical load test for a strip footing (McCarthy, 2007). 

 

 

 

Figure 4. General shear failure of a strip footing (McCarthy, 2007). 
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Figure 5. Load–settlement curve for general shear failure of a strip footing (repro-

duced from McCarthy, 2007). 

 

 

For a soft clay layer or a loose 

sand layer, McCarthy (2007) obtained 

the punching shear failure shown in 

Figure 6, and the load–settlement curve 

shown in Figure 7. 

 

 

 

 
Figure 6. Punching shear failure of a strip footing (McCarthy, 2007). 
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Figure 7. Load–settlement curve for punching shear failure of a strip footing (repro-

duced from McCarthy, 2007). 

 

 

McCarthy (2007) showed that 

general shear failure occurs in a firm 

clay layer or dense sand layer, and that 

punching shear failure occurs in a soft 

clay layer or loose sand layer. Further-

more, McCarthy (2007) also showed 

that when general shear failure occurs, 

the load–settlement curve is plastic 

strain softened (see Figure 5); con-

versely, when punching shear failure 

occurs, the load–settlement curve is 

perfectly plastic (see Figure 7). How-

ever, Figure 2 shows that in the process 

of deriving the ultimate bearing capac-

ity equation, Terzaghi adopted the in-

compatible perfectly plastic model 

when the general shear failure plane 

was first set. Therefore, it is necessary 

to further explore the ultimate bearing 

capacity equation for foundations as 

derived by Terzaghi. 

 

Localizations of Deformations in 

Strain-Softening Plasticity 

 

It is generally noted that when 

ductile solids such as rocks, overly 

consolidated clays, granular materials, 

polymers, and structural metals are de-

formed sufficiently far into the plastic 

range, a smoothly and continuously 

varying deformation pattern gives way 

to highly localized deformations in the 

form of shear bands (Rice, 1977). Such 
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a phenomenon can be understood as 

instability in the macroscopic constitu-

tive description of the inelastic defor-

mation of the material. Specifically, 

instability can be understood in the way 

that the constitutive relations allow the 

homogeneous deformation of an ini-

tially uniform material to lead to a bi-

furcation point, at which nonuniform 

deformation can be initiated in a planar 

band under conditions of continuing 

equilibrium and continuing homoge-

neous deformation outside the zone of 

localization (Rudnicki and Rice, 1975). 

 

The Constitutive Equation 

For strain-softening plasticity, the 

yield function, F, proposed by Hsu 

(1987), is expressed as follows: 

 

,               (Equation 1) 

where: 

 = the second invariant of deviatoric stress, 

 = the size of the initial yield surface, 

 = the plastic octahedral shear strain, and 

H = the strain-softening parameter. 

Differentiating Equation 1 leads to: 

,   (Equation 2) 

where: 

 = the incremental stress vector and 

 = the incremental plastic octahedral shear strain. 

The flow rule is: 

. 

 

Therefore, the elastic–plastic 

strain-softening stress–strain matrix can 

be derived as follows: 
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Condition for Stability of the Solution 

For plastic strain-softening mate-

rials, two types of energy—the incre-

mental plastic strain energy and dam-

age energy—are dissipated during a 

load step in the strain-softening range. 

The incremental plastic energy of an 

element for a particular stress incre-

ment is equal to the shaded area below 

the stress–strain curve, as shown in 

Figure 8, times the volume of the ele-

ment. The incremental damage energy 

of an element for a particular load step 

is equal to the shaded area above the 

stress–strain curve, as shown in Figure 

8, times the volume of the element. 

 

 

 

 

Figure 8. Schematic diagram of the incremental damage energy 

and the incremental plastic energy. 

 
 

In reviewing the stability of the 

incremental finite-element solutions, 

which include strain-softening material 

behavior, Prevost (1974) used the 
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variational approach based on the in-

ternal strain energy due to the stresses 

of the existing state and the stress in-

crements to obtain the failure mecha-

nism, which he defined as follows: “A 

failure mechanism develops when the 

incremental external work put into the 

system, plus the incremental work re-

duced by the plastic, strain-softening 

zone, equals or exceeds the work that 

may be absorbed by the surrounding 

unyielded and/or strain-hardening ma-

terial.” The volume, V of the body can 

then be divided into two sub-volumes, 

Vps and V − Vps, where Vps is the total 

volume of the strain-softening regions. 

Under this consideration, the unique-

ness of the incremental solutions is 

proved. 

Based on the physical behavior of 

materials, it is generally accepted that if 

the total external incremental applied 

energy is positive, then the total in-

duced internal incremental strain en-

ergy must be positive. On the other 

hand, if the total external incremental 

applied energy is negative, then the to-

tal induced internal incremental strain 

energy must also be negative. Any nu-

merical solution must obey such a law; 

otherwise, the solutions will be unsta-

ble. The above criterion has been used 

in this research for determining the sta-

bility condition of the incremental solu-

tions. 

In a variational approach, the to-

tal potential energy  is used in static 

elastic analyses. Therefore, the total 

incremental potential energy,  

should be used in the derivation of the 

equilibrium equation for the incre-

mental load condition. The total incre-

mental potential energy is: 

 

 = (Total incremental potential energy due to existing loads and the corre-

sponding induced internal stresses) + (Total incremental potential energy due 

to the external load increments and the corresponding induced internal stress 

increments) 

= ,      (Equation 3) 

where: 

 = the existing stress vector, 

 = the incremental stress vector, 

 = the incremental strain vector, 

 = the incremental displacement vector, 
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 = the existing force vector, and 

 = the incremental force vector. 

 

Since the structure should be in 

equilibrium under a set of existing 

forces, it can be concluded that the first 

term on the right-hand side of Equation 

3 will disappear for the existing forces, 

i.e., the existing forces will contribute 

no incremental potential energy. How-

ever, the incremental forces, which in-

clude body force, surface tractions, and 

applied concentrated forces, will pro-

duce some incremental potential energy. 

Therefore, the total incremental poten-

tial energy becomes: 

 

.            (Equation 4) 

 

In the finite-element approximation, Equation 4 can be expressed as follows: 

 

,      (Equation 5) 

 

where 

 = the strain-displacement matrix. 

The global stiffness matrix  is: 

 

.                (Equation 6) 

 

Substitution of Equation 6 into 5 leads to: 

 

.           (Equation 7) 

 

 

It can be seen from Equation 7 

that, for the condition of prescribed 

displacements, since all of the forces 

are induced, both terms on the right 

side of Equation 7 always have the 

same sign. This means that the condi-

tion of stability for the incremental so-

lutions for the prescribed displacement 
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case is guaranteed. When the forces are 

prescribed and if the total external in-

cremental energy is positive, the stabil-

ity of the incremental solutions is 

guaranteed only when the global stiff-

ness matrix is positive definite. When 

the global stiffness matrix is negative 

definite, the instability condition of the 

solution will occur. 

 

Condition for Uniqueness of the 

Solution 

 

For a strain-hardening material or 

perfectly plastic material, Drucker's 

postulate is the required condition for 

uniqueness of the solution. According 

to Drucker's postulate, the required 

condition for uniqueness of the solution 

is that the two potential energy incre-

ments on the right-hand side of Equa-

tion 7 are both positive. 

For the strain-softening material, 

the solution can be unique even with 

the negative net potential energy pro-

duced by the external agencies. It has 

been argued that two solutions can be 

obtained if there is more than one 

minimum of the total incremental po-

tential energy, as shown in Figure 9. 

 

 
 

(a) Without damage energy 

 



2021-1215 IJOI 
https://www.ijoi-online.org/ 

 
The International Journal of Organizational Innovation 

Volume 14 Number 13, January 2022 
 

216 

 
 

(b) With damage energy 

 

Figure 9. Two solutions for two minimum total incremental potential energies for a 

stress increment (Hsu, 1987). 

 

 

However, as explained in Figure 

10, there is only one minimum total 

incremental potential energy. This is 

because the average of the stress–strain 

matrix for the existing stresses ( ) and 

the existing stresses plus the stress in-

crements ( ) are used to form the 

global stiffness matrix. As shown in 

Figure 10, only one of the four condi-

tions will be used; hence, only one 

minimum total incremental potential 

energy will exist. 
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(a) Elastic range 

 

 

(b) Elastic–plastic range 
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(c) Elastic–plastic range 

 

 

(d) Plastic range 

 

Figure 10. Four possible conditions in a stress increment when an averaging scheme 

is used to form the stress–strain matrix (Hsu, 1987). 
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For uniqueness, two sets of solu-

tions,  and , are assumed to 

satisfy the equilibrium condition at the 

same time. The equilibrium condition is 

derived by minimizing the total incre-

mental potential energy; therefore, both 

 and  should provide the same 

minimum total incremental potential 

energy. By substituting  and  

into Equation 7 and minimizing the to-

tal incremental potential energy with 

respect to  and , one will ob-

tain: 

 

 and                     (Equation 8) 

.                        (Equation 9) 

Equations 8 and 9 can be combined as follows: 

.                  (Equation 10) 

Therefore, one of the following two conditions must be true: 

                       (Equation 11) 

or 

det ( .                       (Equation 12) 

For elastic–plastic 

strain-hardening materials or elas-

tic–perfectly plastic materials, the de-

terminant of the structural stiffness ma-

trix det (  cannot be equal to zero, so 

. In this case, the analysis 

result does not include shear bands (see 

Figures 11 and 12). 
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Figure 11. The deformed mesh without shear bands of the elastic–plastic 

strain-hardening plate obtained by the finite-element analysis (Hsu, et al., 2021). 

 

 
 

Figure 12. The deformed mesh without shear bands of the elastic–perfectly plastic 

plate obtained by the finite-element analysis (Hsu, et al., 2021). 

 
 

However, for elastic–plastic 

strain-softening materials, the determi-

nant of the structural stiffness matrix 

det (  can be equal to zero. In this 

analysis case, external agencies must be 

applied by specified displacements in-

stead of specified loads to obtain the 

analysis result for shear bands (see 

Figure 13). 
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Figure 13. The deformed mesh with shear bands of the elastic–plastic 

strain-softening plate obtained by the finite-element analysis (Hsu, et al., 2021). 

 

Loss of symmetry 

Generally, the ground surface 

must be leveled before foundation con-

struction, and then the degree of soil 

compaction must be assessed to ensure 

that the foundation soil is firm or dense. 

In the case of foundation soil with in-

sufficient bearing capacity, the structure 

of the foundation soil will be unstable 

at first, and then general shear failure 

will occur under the loss of symmetry 

condition (as shown in Figures 14 and 

15). 

 

 

 

Figure 14. Tilting of a building induced by asymmetrical sliding failure of real 

foundation soil (Hsu and Ho, 2016).
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Figure 15. Schematic diagram of asymmetric sliding failure of a foundation embedded 

in a firm clay layer or dense sand layer. 

 

For the triaxial compression test 

of a hard mudstone specimen, even if 

the top and bottom surfaces of the 

specimen are kept horizontal during 

the test, the prescribed vertical dis-

placements are applied from the bot-

tom of the specimen under the condi-

tion of axis-symmetrical conditions. 

When the strain goes deep into the 

plastic range, localized deformations 

are caused by strain softening, which 

in turn induce shear bands. Figure 16 

shows that the specimen including 

shear bands has obviously lost its 

symmetry. 

 

 

 
Figure 16. In a triaxial compression test, the hard mudstone specimen loses symmetry 

as a result of plastic strain softening. 
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When the same triaxial compres-

sion test is performed for a soft kaolin 

specimen, after the strain goes deep 

into the plastic range, the specimen 

undergoes a barrel-shaped deformation 

due to perfect plasticity. Figure 17 

shows that the deformed specimen 

does not lose symmetry because it does 

not contain shear bands. 

 

 
 

Figure 17. In a triaxial compression test, the soft kaolin specimen maintains symmetry, 

owing to its perfect plasticity (Hsu, 1987). 

 
 

For the elastic–plastic 

strain-softened strip plate, under the 

prescribed lateral displacements at 

both the left and right ends, the strain 

energy density contours appearing in 

the elastic range are symmetrical 

(shown in Figure 18). However, the 

contours of strain energy density ap-

pearing in the plastic strain-softening 

range are asymmetric (Figure 19). 

 



2021-1215 IJOI 
https://www.ijoi-online.org/ 

 
The International Journal of Organizational Innovation 

Volume 14 Number 13, January 2022 
 

224 

 
 

Figure 18. The symmetrical strain-energy-density contour map for the elastic range 

(Hsu, 1987). 
 

 

 
Figure 19. The asymmetrical strain-energy-density contour distribution map for the 

plastic strain-softening range (Hsu et al., 2017). 

 

 

It can be seen that the condition 

for the loss of symmetry of the founda-

tion soil or the soil specimen is the ap-

pearance of shear bands induced by 

plastic strain softening. 

As far as the structural stiffness 

matrix  is concerned, the determi-

nant of the structural stiffness matrix 

 will be equal to zero because of the 

plastic strain softening, which will in-

duce shear bands under prescribed dis-

placements. In the elastic range, the 

entries of the structural stiffness matrix 
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 have a symmetric condition of kij = 

kji and in the plastic strain-softening 

range, the condition for the determi-

nant of  to be equal to zero is that 

the entries in the two adjacent rows of 

the structural stiffness matrix  cor-

respond, that is, kmj = knj for n = m + 1. 

The structure matrix is therefore 

asymmetric. 

Comparison and Discussion of Results 

1) In deriving the ultimate bearing 

capacity of the foundation, Ter-

zaghi (1943) assumed symmetric 

general shear failure planes in the 

foundation soil under the ultimate 

load (see Figure 2), and the soil 

properties used for the foundation 

soil include cohesion c, angle of 

internal friction φ, and unit weight 

γ. The cohesion c and internal fric-

tion angle φ are obtained from the 

perfectly plastic curves of the test 

results. Figure 2 shows that Ter-

zaghi divides the whole area en-

closed by the general shear failure 

surface into active zone I, radial 

shear zones II and II1, and passive 

zones III and III1. The ultimate 

bearing capacity Qult of the founda-

tion is equal to twice the passive 

earth pressures Pp, as shown in 

Figure 2, that act on the  and 

 planes. The passive earth pres-

sure Pp includes the passive earth 

pressure Pp1 generated by the soil 

cohesion c, the passive earth pres-

sure Pp2 generated by the overbur-

den pressure γDf (i.e., q), and the 

passive earth pressure Pp3 gener-

ated by the weight of the soil en-

closed by the shear failure surface 

. Based on the balance of the 

vertical components of all forces, 

Terzaghi obtained the ultimate 

bearing capacity of the foundation 

as: 

 

 

,             (Equation 13) 

 

 

where Nc, Nq, and Nγ are bear-

ing-capacity factors, where 
 and 

; 
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and , 

where  is equal to 10.8, 14.7, 

25.0, 52.0, and 141.0, when φ is 

equal to , , , , and 

, respectively. 

 

2) Table 1 shows the bearing-capacity 

factors Nc, Nq, and Nγ proposed by 

four scholars, Terzaghi (1943), 

Meyerhof (1976), Hansen (1970), 

and Vesic (1973), as the angle of 

internal friction φ changes. For a 

specific angle of internal friction 

angle φ, the Nc values proposed by 

Meyerhof, Hansen, and Vesic are 

the same, and the Nq values are 

also the same. When the angle of 

internal friction increases from 0° 

to 40°, the ratios of Nc proposed by 

Terzaghi to those proposed by 

Meyerhof, Hansen, and Vesic, re-

spectively, increased from 1.11 to 

1.27. The ratios of Nq proposed by 

Terzaghi to those proposed by 

Meyerhof, Hansen, and Vesic, re-

spectively, increased from 1.00 to 

1.27. When the internal friction an-

gle increases from 10° to 40°, the 

ratio of Nγ proposed by Terzaghi to 

that proposed by Meyerhof de-

creases from 3.00 to 1.07, and the 

ratio of Nγ proposed by Terzaghi to 

that proposed by Hansen decreases 

from 3.00 to 1.26, and the ratio of 

Nγ proposed by Terzaghi to that 

proposed by Vesic varies between 

1.00 and 0.88. 

 

Table 1. Comparison of bearing-capacity factors provided by different studies. 

(a) Nc (Bowles, 1988) 

 
Angle of internal frictionφ 

 
     

Terzaghi (1943) 5.71* 9.60 17.69 37.16 95.66 

Meyerhof (1976) 
5.14 

(1.11) 

8.34 

(1.15) 

14.83 

(1.19) 

30.13 

(1.23) 

75.25 

(1.27) 

Hansen (1970) 
5.14 

(1.11) 

8.34 

(1.15) 

14.83 

(1.19) 

30.13 

(1.23) 

75.25 

(1.27) 

Vesic (1973) 
5.14 

(1.11) 

8.34 

(1.15) 

14.83 

(1.19) 

30.13 

(1.23) 

75.25 

(1.27) 

Note: 1) * = 1.5π + 1; 

2) The value in parentheses is the ratio of Nc proposed by Terzaghi to those proposed by Merhof, 

Handsen, and Vesic, respectively. 
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(b) Nq (Bowles, 1988) 

 
Angle of internal friction φ 

 
     

Terzaghi (1943) 1.0 2.7 7.4 22.5 81.3 

Meyerhof (1976) 
1.0 

(1.00) 

2.5 

(1.08) 

6.4 

(1.16) 

18.4 

(1.22) 

64.1 

(1.27) 

Hansen (1970) 
1.0 

(1.00) 

2.5 

(1.08) 

6.4 

(1.16) 

18.4 

(1.22) 

64.1 

(1.27) 

Vesic (1973) 
1.0 

(1.00) 

2.5 

(1.08) 

6.4 

(1.16) 

18.4 

(1.22) 

64.1 

(1.27) 

 

(c) Nγ (Bowles, 1988) 

 
Angle of internal friction φ 

 
     

Terzaghi (1943) 0.0 1.2 5.0 19.7 100.4 

Meyerhof (1976) 0.0 
0.4 

(3.00) 

2.9 

(1.72) 

15.7 

(1.25) 

93.6 

(1.07) 

Hansen (1970) 0.0 
0.4 

(3.00) 

2.9 

(1.72) 

15.1 

(1.30) 

79.4 

(1.26) 

Vesic (1973) 0.0 
1.2 

(1.00) 

5.4 

(0.93) 

22.4 

(0.88) 

109.3 

(0.92) 

 

 

3) When plastic strain softening in-

duces structural instability, the 

asymmetric structural matrix in-

duces general shear failure planes. 

Thus, the symmetric general shear 

failure planes set by Terzaghi before 

deriving the ultimate bearing capac-

ity equation of the foundation actu-

ally do not exist. Therefore, using 

the Terzaghi formula to calculate 

the ultimate bearing capacity Qult 

results in overestimation of Qult by 

approximately two times. 

4) When the rigid–perfectly plastic 

model is adopted, the shear strength 

parameters used are all from the 

experimental results of the ultimate 

shear strength. But the general shear 

failure plane is induced by plastic 

strain softening and, therefore, the 

shear resistance strength will de-

crease from the peak value to the 

residual value as the strain softens. 

In other words, the cohesion c will 

be reduced from the peak value cp 

to the residual value cr, cr ≈ 0, and 

the angle of internal friction φ will 

also be reduced from the peak value 



2021-1215 IJOI 
https://www.ijoi-online.org/ 

 
The International Journal of Organizational Innovation 

Volume 14 Number 13, January 2022 
 

228 

φp to the residual value φr. There-

fore, when calculating the ultimate 

bearing capacity Qult using the ulti-

mate shear resistance strength pa-

rameter, there is also an overestima-

tion problem. 

5) Although the safety factor used in 

the foundation design is as high as 

2.5 to 3.0, because of the existence 

of the above two overestimation 

problems, the building is still prone 

to tilt or collapse after instability. 

6) Due to the presence of highly com-

pressible dissolved air in ground-

water, Hsu et al. (2022) found that 

saturated clay as defined by tradi-

tional scholars is actually only 

seemingly saturated clay. When the 

foundation is embedded in a seem-

ingly saturated clay layer, at the 

moment when the vertical pressure 

increment is applied, the dissolved 

air in the pore water of the clay 

layer will be instantly compressed, 

resulting in an immediate settlement 

(Hsu et al., 2021). Therefore, the 

triaxial compression tests for satu-

rated clay specimens performed 

under unconsolidated and undrained 

conditions with no volume change 

do not actually exist. Since such test 

conditions do not exist, therefore, 

the test results of  and 

φ  shown in Figure 20 adopted 

by Chi and Lin (2020) have no sub-

stantial meaning.  

 

 
 

Figure 20. Typical triaxial compression test results under unconsolidated and 

undrained test conditions for traditional saturated clay specimens. 

 

 

7) When shear bands are induced after 

the localized deformations occur, 

the plastic zones only exist inside 

the shear bands, while the elastic 
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zones exist outside the shear bands, 

as shown in Figure 19. 

8) When the elastic–perfectly plastic 

model is adopted, plastic zones 

spread to both sides of the founda-

tion soil, as shown in Figure 21. 

Figure 22 shows the distribution of 

the elastic zones and the plastic 

zones obtained from finite-element 

analysis. It can be seen from Figure 

22 that the elastic zones and plastic 

zones are also symmetrically dis-

tributed. Since the simplified per-

fectly plastic model is used to re-

place the plastic strain-softening 

model in the analysis, when asym-

metric shear bands cannot be ob-

tained, the elastic zones that should 

originally exist outside the shear 

bands are largely turned into plastic 

zones. Therefore, the results of this 

analysis obviously do not meet the 

actual needs of general shear failure 

of foundations. 

 
 

 
 

Figure 21. Spread of plastic zones obtained by finite-element analysis using elas-

tic–perfectly plastic model (Chen, 1975). 
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Figure 22. Elastic zones and plastic zones obtained by finite-element analysis using 

elastic–perfectly plastic model (reproduced from Chi and Lin, 2020). 

 

 

Conclusions and Suggestions 

Current literature reveals that 

shear bands only appear under plastic 

strain softening, and shear-band solu-

tions under structural instability condi-

tions have also been demonstrated to 

be obtained by prescribed displace-

ments. Therefore, based on the re-

search results of this paper, the fol-

lowing four conclusions are obtained: 

1) Based on the elastic–plastic 

strain-softening constitutive equa-

tion, shear-band solutions come 

from the determinant of the struc-

tural matrix  being equal to 

zero. Therefore, shear-band solu-

tions can be obtained by the fi-

nite-element method under pre-

scribed displacements. 

2) In the case that the initial structure 

matrix is symmetric, when the 

strain goes deep into the plastic 

range, the structure matrix  

will lose its symmetry when its de-

terminant is equal to zero. There-

fore, the general shear failure plane 

must not be set to be symmetrical 

under the ultimate load for a foun-

dation embedded in a firm clay 

layer or dense sand layer. 
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3) When the general shear failure 

plane is set, once the 

strain-softening model is replaced 

by the perfectly plastic model, the 

foundation soil will remain per-

fectly plastic when it should be 

strain-softened, and then it will still 

maintain symmetry when it should 

be lost. Finally, the problem of 

overestimating the ultimate bearing 

capacity of foundations also arises. 

4) When the shear band appears, the 

plastic zones will only exist locally 

inside the shear bands, and all the 

outside of the shear bands are elas-

tic zones. If the perfectly plastic 

model is adopted to replace the 

strain-softening model in the 

analysis, then, in the case that the 

shear band cannot be induced, most 

of the elastic zones that should 

have existed outside the shear 

bands will be incorrectly turned 

into plastic zones. 

 

In view of the above four conclu-

sions, the authors suggest: 

1) In future, analysis of the ultimate 

bearing capacity of foundations 

must be more rigorous, especially 

when it is clear that general shear 

failure will not occur in the per-

fectly plastic model, and such a 

model should no longer be used to 

analyze the ultimate bearing capac-

ity of the foundation. 

2) The design code should completely 

exclude the ultimate bearing capac-

ity equation for a foundation de-

rived based on the perfectly plastic 

model, so as to avoid the collapse 

of the building due to misuse by 

the technician, and to ensure the 

safety of all foundations within the 

service life. 
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